Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cells ; 10(9)2021 08 31.
Article in English | MEDLINE | ID: covidwho-1390541

ABSTRACT

COVID-19 presents with a wide range of clinical neurological manifestations. It has been recognized that SARS-CoV-2 infection affects both the central and peripheral nervous system, leading to smell and taste disturbances; acute ischemic and hemorrhagic cerebrovascular disease; encephalopathies and seizures; and causes most surviving patients to have long lasting neurological symptoms. Despite this, typical neuropathological features associated with the infection have still not been identified. Studies of post-mortem examinations of the cerebral cortex are obtained with difficulty due to laboratory safety concerns. In addition, they represent cases with different neurological symptoms, age or comorbidities, thus a larger number of brain autoptic data from multiple institutions would be crucial. Histopathological findings described here are aimed to increase the current knowledge on neuropathology of COVID-19 patients. We report post-mortem neuropathological findings of ten COVID-19 patients. A wide range of neuropathological lesions were seen. The cerebral cortex of all patients showed vascular changes, hyperemia of the meninges and perivascular inflammation in the cerebral parenchyma with hypoxic neuronal injury. Perivascular lymphocytic inflammation of predominantly CD8-positive T cells mixed with CD68-positive macrophages, targeting the disrupted vascular wall in the cerebral cortex, cerebellum and pons were seen. Our findings support recent reports highlighting a role of microvascular injury in COVID-19 neurological manifestations.


Subject(s)
COVID-19/pathology , Cerebral Cortex/pathology , Aged , Aged, 80 and over , Autopsy , Brain/pathology , Brain/virology , Brain Diseases/pathology , Brain Diseases/virology , CD8-Positive T-Lymphocytes/pathology , Cerebral Cortex/virology , Female , Humans , Inflammation , Macrophages/pathology , Male , Microvessels/pathology , Microvessels/virology , Middle Aged , Nervous System Diseases/pathology , Nervous System Diseases/virology , SARS-CoV-2/pathogenicity
2.
Immunity ; 54(7): 1594-1610.e11, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1281436

ABSTRACT

COVID-19 can cause severe neurological symptoms, but the underlying pathophysiological mechanisms are unclear. Here, we interrogated the brain stems and olfactory bulbs in postmortem patients who had COVID-19 using imaging mass cytometry to understand the local immune response at a spatially resolved, high-dimensional, single-cell level and compared their immune map to non-COVID respiratory failure, multiple sclerosis, and control patients. We observed substantial immune activation in the central nervous system with pronounced neuropathology (astrocytosis, axonal damage, and blood-brain-barrier leakage) and detected viral antigen in ACE2-receptor-positive cells enriched in the vascular compartment. Microglial nodules and the perivascular compartment represented COVID-19-specific, microanatomic-immune niches with context-specific cellular interactions enriched for activated CD8+ T cells. Altered brain T-cell-microglial interactions were linked to clinical measures of systemic inflammation and disturbed hemostasis. This study identifies profound neuroinflammation with activation of innate and adaptive immune cells as correlates of COVID-19 neuropathology, with implications for potential therapeutic strategies.


Subject(s)
Brain/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Microglia/immunology , Blood-Brain Barrier/immunology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain/metabolism , Brain/pathology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/pathology , Cell Communication , Central Nervous System/immunology , Central Nervous System/metabolism , Central Nervous System/pathology , Humans , Immune Checkpoint Proteins/metabolism , Inflammation , Lymphocyte Activation , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Olfactory Bulb/immunology , Olfactory Bulb/metabolism , Olfactory Bulb/pathology , Respiratory Insufficiency/immunology , Respiratory Insufficiency/pathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
3.
Folia Neuropathol ; 59(1): 1-16, 2021.
Article in English | MEDLINE | ID: covidwho-1222274

ABSTRACT

This article constitutes a summary of the knowledge on the involvement of the nervous system in COVID-19, concerning its general pathobiology, clinical presentation and neuropathological features as well as the future directions of investigation. Variable definitions, selection bias, mainly retrospective analyses of hospitalized patients and different methodologies are implemented in the research of this new disease. Central nervous system (CNS) pathology presents most frequently features of non-specific neuroinflammation with microglial activation and lymphoid infiltrations, ischemic/hypoxic encephalopathy, acute cerebrovascular disease, and microthrombi. Some brain specimens remain unaffected or show only non-specific changes of the critical status. Interpretations of the neuropathological findings are not always balanced in a clinical context and discrepant in consequence. Designing of longitudinal neuropathological studies, more frequent autopsies, and building of COVID-19 brain banks, together with neuroimaging analyses is essential. Genetic predispositions or immunological factors corresponding to the disease profile as well as cerebrospinal fluid (CSF) or serum biomarkers of COVID-19, the impact of different virus variants and influence of the therapy need to be identified. The mechanisms causing neuroCOVID and cognitive impairment - whether they are infectious, toxic, vascular or metabolic - create other aspects under research. There are also many existential questions about post-COVID and delayed sequelae of the infection. The fight with pandemic is a challenge for the global society, with neuropathologists and neuroscientists as important allies in struggle for understanding and conquering COVID-19.


Subject(s)
Brain/pathology , COVID-19/epidemiology , COVID-19/pathology , Nervous System Diseases/epidemiology , Nervous System Diseases/pathology , SARS-CoV-2 , Brain/diagnostic imaging , COVID-19/diagnostic imaging , Humans , Nervous System Diseases/diagnostic imaging , Pandemics , Time Factors
4.
ACS Chem Neurosci ; 12(4): 573-580, 2021 02 17.
Article in English | MEDLINE | ID: covidwho-1065791

ABSTRACT

Long-COVID is a postviral illness that can affect survivors of COVID-19, regardless of initial disease severity or age. Symptoms of long-COVID include fatigue, dyspnea, gastrointestinal and cardiac problems, cognitive impairments, myalgia, and others. While the possible causes of long-COVID include long-term tissue damage, viral persistence, and chronic inflammation, the review proposes, perhaps for the first time, that persistent brainstem dysfunction may also be involved. This hypothesis can be split into two parts. The first is the brainstem tropism and damage in COVID-19. As the brainstem has a relatively high expression of ACE2 receptor compared with other brain regions, SARS-CoV-2 may exhibit tropism therein. Evidence also exists that neuropilin-1, a co-receptor of SARS-CoV-2, may be expressed in the brainstem. Indeed, autopsy studies have found SARS-CoV-2 RNA and proteins in the brainstem. The brainstem is also highly prone to damage from pathological immune or vascular activation, which has also been observed in autopsy of COVID-19 cases. The second part concerns functions of the brainstem that overlap with symptoms of long-COVID. The brainstem contains numerous distinct nuclei and subparts that regulate the respiratory, cardiovascular, gastrointestinal, and neurological processes, which can be linked to long-COVID. As neurons do not readily regenerate, brainstem dysfunction may be long-lasting and, thus, is long-COVID. Indeed, brainstem dysfunction has been implicated in other similar disorders, such as chronic pain and migraine and myalgic encephalomyelitis or chronic fatigue syndrome.


Subject(s)
Brain Diseases/physiopathology , Brain Stem/physiopathology , COVID-19/complications , Inflammation/physiopathology , Thrombosis/physiopathology , Angiotensin-Converting Enzyme 2/metabolism , Brain Diseases/metabolism , Brain Diseases/virology , Brain Stem/blood supply , Brain Stem/metabolism , Brain Stem/virology , COVID-19/metabolism , COVID-19/physiopathology , Humans , Inflammation/metabolism , Inflammation/virology , Neuropilin-1/metabolism , RNA, Viral/isolation & purification , RNA, Viral/metabolism , Receptors, Coronavirus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Thrombosis/metabolism , Thrombosis/virology , Viral Tropism , Post-Acute COVID-19 Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL